DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled variations ranging from 1.5 to 70 billion specifications to develop, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled variations of the models too.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses reinforcement finding out to boost thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial identifying feature is its support learning (RL) step, which was utilized to improve the design's reactions beyond the standard pre-training and tweak process. By including RL, DeepSeek-R1 can adjust better to user feedback and goals, ultimately boosting both importance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, suggesting it's geared up to break down complicated questions and factor through them in a detailed manner. This directed reasoning process enables the design to produce more precise, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT abilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually captured the market's attention as a flexible text-generation model that can be integrated into numerous workflows such as representatives, rational thinking and data interpretation jobs.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion parameters, making it possible for effective inference by routing inquiries to the most pertinent professional "clusters." This method enables the design to concentrate on various issue domains while maintaining overall performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient models to imitate the behavior and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as a teacher design.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this model with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous material, and evaluate designs against key safety criteria. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limit boost, create a limit boost request and reach out to your account team.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For instructions, see Set up consents to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to present safeguards, prevent harmful material, and examine models against crucial security criteria. You can implement security measures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to evaluate user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The basic flow includes the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the last result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a provider and choose the DeepSeek-R1 model.
The design detail page provides vital details about the model's abilities, pricing structure, and implementation guidelines. You can find detailed usage guidelines, including sample API calls and code snippets for integration. The design supports various text generation jobs, including material creation, code generation, and question answering, utilizing its support discovering optimization and CoT reasoning capabilities.
The page also includes release choices and licensing details to assist you get started with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, pick Deploy.
You will be prompted to configure the deployment details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of instances, get in a number of circumstances (between 1-100).
6. For Instance type, select your instance type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure innovative security and facilities settings, consisting of virtual personal cloud (VPC) networking, service function authorizations, and encryption settings. For many utilize cases, the default settings will work well. However, for garagesale.es production implementations, you might wish to review these settings to line up with your company's security and compliance requirements.
7. Choose Deploy to start using the design.
When the release is total, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive user interface where you can explore various triggers and change design parameters like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal results. For example, material for reasoning.
This is an outstanding method to check out the design's reasoning and text generation abilities before incorporating it into your applications. The play ground offers instant feedback, helping you comprehend how the model reacts to different inputs and letting you tweak your prompts for optimal results.
You can rapidly check the model in the play ground through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example demonstrates how to perform inference utilizing a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime client, sets up reasoning specifications, and sends out a demand to create text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML options that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 hassle-free techniques: using the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to help you choose the technique that finest matches your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design browser displays available designs, with details like the service provider name and design abilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each model card shows key details, consisting of:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if appropriate), showing that this design can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the design
5. Choose the design card to view the model details page.
The design details page consists of the following details:
- The model name and service provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab consists of essential details, such as:
- Model description. - License details.
- Technical requirements.
- Usage guidelines
Before you deploy the model, it's suggested to review the design details and license terms to validate compatibility with your usage case.
6. Choose Deploy to continue with release.
7. For Endpoint name, use the immediately produced name or produce a custom one.
- For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, get in the number of instances (default: 1). Selecting proper and counts is crucial for cost and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is picked by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for accuracy. For this design, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
- Choose Deploy to release the design.
The deployment procedure can take a number of minutes to complete.
When release is complete, your endpoint status will alter to InService. At this point, the model is all set to accept reasoning demands through the endpoint. You can keep track of the implementation development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is total, you can invoke the design utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for inference programmatically. The code for releasing the design is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as revealed in the following code:
Tidy up
To prevent unwanted charges, complete the steps in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the model using Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace implementations. - In the Managed implementations area, find the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're deleting the correct implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build innovative options utilizing AWS services and sped up compute. Currently, he is focused on developing techniques for fine-tuning and enhancing the reasoning efficiency of large language designs. In his leisure time, Vivek delights in treking, seeing movies, and attempting different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing options that help consumers accelerate their AI journey and unlock company worth.